
Delphi Internals:
Using And Writing DLLs
by Dave Jewell

Over the coming months, the
Delphi Internals column is

going to peer under the hood of
Delphi, examining many of
the low-level aspects of Delphi
programming. Some of the issues
we’re going to cover include
dynamic link libraries, debugging
Delphi applications, the inside
story behind exception handling,
how to interface to other program-
ming languages and much more!

If there’s anything specific that
you’d like to see covered, then
please write to me c/o The Delphi
Magazine and tell me what you’re
interested in. Do bear in mind
though, that my mission in life is to
cover low-level techie program-
ming. I may not react favourably if
asked how to go about designing an
accountancy package in Delphi!
Alternatively, you can send
email to me via the Internet at
djewell@cix.compulink.co.uk

Using DLLs With Delphi
OK, enough of the social niceties –
let’s roll up our sleeves and get
down to business. In this issue
we’re going to look at Dynamic Link
Libraries, or DLLs for short.

I’m assuming that you’ve got no
previous experience of using
Borland Pascal, but that you are
familiar with the basic concepts
behind DLLs and that you’ve had
some exposure to Windows pro-
gramming. We’ll therefore cover
the essentials of using and creating
DLLs from a Pascal developer’s
point of view before looking in
more detail at how you would build
a DLL in Delphi.

Whenever you examine a source
file that’s been created by Delphi,
you’ll see a USES statement near the
top. This identifies which Pascal
units are required to compile the
file. Almost invariably, the first two
units specified in the USES

statement are WINTYPES and
WINPROCS. These files contain the
type definitions and routine decla-
rations needed by Pascal in order
to call the Windows API. Since the
Windows API is implemented using
DLLs, we need actually look no fur-
ther than the routine declarations
in the WINPROCS unit – this tells us all
we need to know about calling a
DLL from Delphi’s Object Pascal.

Calling An
External Routine In A DLL
If you look at the WINPROCS.PAS
source code, you’ll see that there
are a huge number of routine
declarations there – so many that
it’s difficult to see the wood for the
trees. In order to make things
clearer, I’ve written a small unit
called TINYAPI.PAS which declares
just a single routine, SetRect. The
code for this unit is shown below.
Let’s see how it works.

unit TinyApi;
interface
uses WinTypes;
procedure SetRect(
 var Rect: TRect;
 X1, Y1, X2, Y2: Integer);
implementation
procedure SetRect; external
 USER index 72;
end.

The interface part of the unit is
followed by a USES clause for
WINTYPES. This is then followed by
the procedure declaration for
SetRect itself. The important part,
of course, is the actual implemen-
tation of this routine in the
implementation part of the unit.
The first thing you’ll notice is that
you don’t need to repeat the list of
parameters required by the
SetRect routine. You can repeat the
parameter list if you wish, but if
you do so, then you must make

sure that it exactly matches the
previous definition. For example, if
you refer to the four integers as X1,
Y2, X2, Y2 in the interface declara-
tion, then the compiler won’t allow
you to refer to those same integers
as left, top, right, bottom in the
implementation part of the unit,
even if these are perfectly accept-
able names for the parameters.

The EXTERNAL keyword is more
interesting. This tells the compiler
that the actual code for the inter-
face routine isn’t in the unit being
compiled, but is somewhere else.
DOS-based Pascal developers
frequently use the EXTERNAL
keyword to link a program with
separately compiler assembler
code. However, thanks to the
magic of dynamic linking, we can
tell the compiler that the code isn’t
going to be statically linked at all.

The next part of the statement
specifies the name of the DLL
containing the SetRect routine – in
this case, it’s the USER DLL, one of
the core components of Windows
itself. The compiler doesn’t need to
verify this information at compile
time. It doesn’t care at this point
whether the USER DLL exists, or
whether it really contains the rou-
tine we’re saying is there, all these
checks take place at run-time.

The final part of the
implementation statement specifies
an ordinal value for the routine.
You should know that all routines
exported by a DLL have an associ-
ated name called the ordinal
number. When you import a DLL
routine (as we’re doing here), you
need to somehow tell Windows
which routine you’re interested in.
By specifying an ordinal number,
our application will end up asking
Windows for routine number 72 in
the USER library. This is called
linking by ordinal. Alternatively,
you could omit the INDEX keyword

April 1995 The Delphi Magazine 27

and the ordinal number itself.
You’d then be linking by name. In
general, linking by name is easier
(since you don’t have to mess
about with ordinal numbers) but it
results in a slightly larger ex-
ecutable file and is fractionally
slower at run-time. If you want to
know what routines are exported
by a particular DLL, and what ordi-
nal values they have, you can use a
Microsoft utility such as EXEHDR to
dump the list of exported routines.

Import Units
And Custom DLLs
The WINPROCS unit and the TINYAPI
unit that we looked at earlier were
examples of import units. An
import unit has only one mission in
life – its job is to take a set of DLL
routines and make those routines
available to the application in
which it is linked. For example,
when using the FlashWindow API call
inside a Delphi routine, you can
just call FlashWindow as if it were a
local routine. You don’t know, and
don’t care, that it’s actually
implemented inside the USER
library. That’s what an import unit
is for: to make DLL routines more
immediately accessible.

At this point, we’ve only
discussed how to interface to the
standard DLLs, but naturally, you
can call custom DLLs just as easily.
These DLLs might have been
written using C, Pascal, assembler
or Delphi itself – it really doesn’t
matter. As an example, here’s a
couple of procedure declarations
used in one of my own programs,
referring to routines in a custom
DLL called TFRAME.DLL:

procedure FixLibrary; far;
 external ’TFRAME’ index 1;
procedure UpdateTopLevelWindow(
 fDraw: Boolean); far;
 external ’TFRAME’ index 2;

There are two important things to
notice about these two procedure
declarations. Firstly, you’ll see that
they include the procedure
parameters along with the EXTERNAL
keyword, DLL name and index
information. That’s because these
declarations aren’t part of an
import unit. If you want to call a

custom DLL, you don’t have to
create an import unit if you don’t
want to. Using the approach shown
here, you can just go right ahead
and put the DLL procedure decla-
rations after the USES clause of
your main program. Alternatively,
you could put these same declara-
tions at the beginning of the imple-
mentation part of a unit – that way,
you’d be providing the unit with
access to private routines that it
needs to do its job, but you
wouldn’t be making the existence
of those routines known to any
other parts of your program.

The second point to notice is the
use of the FAR keyword. When you
declare routines in the interface
part of a unit, they’re always far.
Any routine exported by a Delphi
unit is a far routine, and can only be
accessed by a far call. However,
when you’re declaring DLL rou-
tines outside of an import unit, you
must use the FAR keyword. Not do-
ing so will result in a compile error.

Avoiding The Windows API
Having just explained in some
detail how it is that Delphi calls the
Windows API, let me stress that
you shouldn’t go overboard on
using the API. In fact, if you can find
an equivalent call or method in
Delphi’s Visual Component Library
(VCL) which will do the same job,
then you should use the VCL call in
preference to calling the API.
What’s the reason for this API-
phobia? In one word – portability.

Borland went to a lot of trouble
to make the VCL library as portable
as possible. The great majority of
your 16-bit Delphi applications will
be able to move effortlessly across
to 32-bit Windows/NT and
Windows 95, provided that you’ve
minimised the use of calls to the
Windows API. In particular, you
should avoid using API calls which
send or receive messages. This is
because, under 16-bit Windows,
Microsoft often packed more than
one quantity into the 32 bits of the
lParam field. Under Win32, how-
ever, window handles are now 32-
bits wide and many Windows
messages have therefore had to
adopt a different arrangement of
values in the wParam and lParam

fields of a message. C/C++ program-
mers get around this by using mes-
sage cracker macros which pack
and unpack the field of a message
while retaining portability between
the two different APIs. Under
Delphi, the proper approach is to
use VCL wherever possible.

Writing DLLs With Delphi
One of the many interesting things
about Delphi is its ability not only
to use DLLs but to create them.
Using Delphi, you can create a DLL
that’s used by more than one of
your programs, thus reducing the
amount of disk space required
when building a suite of programs.

Alternatively, you can use DLLs
to provide functionality to your us-
ers in bite-sized pieces. For exam-
ple, you might decide to sell an
application which views and proc-
esses graphics files. You could
build the capability to read and
write some common graphics file
formats into the application itself,
but you might also want the flexi-
bility to sell add-on packs which
operate on even more formats. By
packaging these add-on packs as
DLLs, you can easily arrange for
the main application to detect the
presence of these add-ons and use
them in a seamless fashion. Inci-
dentally, much of Windows oper-
ates in this way; device drivers,
Control Panel applets, even fonts,
are specialised forms of DLL.

When news of Delphi first began
to leak out, rumours were rife that
you could just plug Delphi compo-
nents into C/C++ applications – one
American programming journal
even enthused about this in its edi-
torial. Of course, this just isn’t
possible – a Delphi component is at
heart an Object Pascal unit. The
Pascal compiler inside Delphi
generates DCU files whereas C/C++
development systems use .OBJ
files. It’s really a case of never the
twain shall meet. However, thanks
to the magic of DLLs, it’s possible
to write a sophisticated user inter-
face using Delphi components and
call it from a C/C++ application.
Actually, you could equally well
call it from a straight Pascal
program, or even from Visual Basic
– a DLL completely breaks down

28 The Delphi Magazine Issue 1

the language barriers and can be
used from any development
system that supports DLL calls.

The Structure Of A DLL
The remainder of this article will
demonstrate how to create a
simple DLL using Delphi. In Delphi,
or Borland Pascal, a DLL is struc-
tured somewhat as shown below:

library MyDLL;
uses WinTypes, WinProcs;
procedure MyFirstProc; export;
begin
 MessageBeep (0);
end;
exports MyFirstProc index 1;
begin
end.
If you look in the project file (the

file with extension .DPR) of any
Delphi application, you’ll see that it
starts off with the reserved word
PROGRAM. By contrast, DLLs always
begin with the reserved word
LIBRARY. This is then followed by a
USES clause for any needed units. In
this simple example (probably the
simplest DLL that it’s possible to
make), there then follows a proce-

dure called MyFirstProcedure which
does nothing except sound a beep.

You’ll notice the procedure dec-
laration uses the EXPORT specifier.
This tells the compiler that the pro-
cedure is going to be called from
another module – the compiler will
then generate the special prologue
and epilogue code which ensures
that the processor’s data segment
register is properly set up on entry
to the procedure. Any routines
exported from a DLL must include
the EXPORT specifier. All call-backs
such as window procedures, hooks
and enum procedures also need
this specifier.

Finally, at the end of the source
code we find an EXPORTS statement.
This lists the routines that are
actually exported from the DLL and
assigns a unique ordinal value to
each routine. This ordinal value
can then be used to call routines in
a DLL as discussed earlier. At this
point, you’re probably thinking
why do we need a separate EXPORTS
statement when we’ve already told
the compiler that MyFirstProc is
exported by using the EXPORT
specifier? That’s a good question!

Remember that the EXPORT specifier
is used for all call-backs and ex-
ported routines. However, we
don’t actually want to make call-
backs and window procedures vis-
ible outside the DLL. It’s the
EXPORTS statement at the end of the
library source file which tells the
compiler what is visible and what
isn’t.

If you compile this simple DLL,
you can then call it using the tech-
niques I described earlier. How-
ever all that happens when you call
the MyFirstProcedure routine is a
beep sound – big deal. In the next
installment, we’ll conclude this
discussion of DLLs by looking at
the more exciting stuff – how to
write DLLs that contain Delphi
forms and components, and how to
call those DLLs from other applica-
tions and development systems.

Dave Jewell is a freelance
consultant/programmer, specialis-
ing in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

April 1995 The Delphi Magazine 29

	Using DLLs with Delphi
	Calling an External Routine in a DLL
	Import Units and Custom DLLs
	Avoiding The Windows API
	Writing DLLs with Delphi
	The Structure of a DLL

